Friday, 19 January 2018

توقع من قبل الحركة من المتوسط ، طريقة


متحرك متوسط ​​التنبؤ التنبؤ. كما قد تخمن أننا نبحث في بعض من أكثر الأساليب بدائية للتنبؤ. ولكن نأمل أن تكون هذه مقدمة مفيدة على الأقل لبعض قضايا الحوسبة المتعلقة بتنفيذ التنبؤات في جداول البيانات. في هذا السياق سوف نستمر من خلال البدء في البداية والبدء في العمل مع توقعات المتوسط ​​المتحرك. نقل متوسط ​​التوقعات. الجميع على دراية بتحرك توقعات المتوسط ​​بغض النظر عما إذا كانوا يعتقدون أنهم. جميع طلاب الجامعات القيام بها في كل وقت. فكر في درجاتك االختبارية في الدورة التي ستحصل فيها على أربعة اختبارات خالل الفصل الدراسي. لنفترض أنك حصلت على 85 في الاختبار الأول. ما الذي يمكن أن تتنبأ به لنتيجة الاختبار الثانية ما رأيك بأن معلمك سوف يتنبأ بنتيجة الاختبار التالية ما رأيك في أن أصدقائك قد يتنبأون بنتيجة الاختبار التالية ما رأيك في توقع والديك لنتيجة الاختبار التالية بغض النظر عن كل بلابينغ كنت قد تفعل لأصدقائك وأولياء الأمور، هم ومعلمك من المرجح جدا أن نتوقع منك الحصول على شيء في مجال 85 كنت حصلت للتو. حسنا، الآن دعونا نفترض أنه على الرغم من الترويج الذاتي الخاص بك إلى أصدقائك، وكنت أكثر من تقدير نفسك والشكل يمكنك دراسة أقل للاختبار الثاني وحتى تحصل على 73. الآن ما هي جميع المعنيين وغير مدرك الذهاب إلى توقع أن تحصل على الاختبار الثالث هناك اثنين من المرجح جدا النهج بالنسبة لهم لوضع تقدير بغض النظر عما إذا كانوا سوف تقاسمها معك. قد يقولون لأنفسهم، هذا الرجل هو دائما تهب الدخان حول ذكائه. هيس الذهاب للحصول على آخر 73 إذا هيس محظوظا. ربما كان الوالدان يحاولان أن يكونا أكثر داعما ويقولان: كوتيل، حتى الآن حصلت على 85 و 73، لذلك ربما يجب أن تحصل على حوالي (85 73) 2 79. أنا لا أعرف، ربما لو كنت أقل من الحفلات و ويرنت يهزان في كل مكان في جميع أنحاء المكان، وإذا كنت بدأت تفعل الكثير من الدراسة يمكنك الحصول على أعلى score. quot كل من هذه التقديرات تتحرك في الواقع متوسط ​​التوقعات. الأول يستخدم فقط أحدث درجاتك للتنبؤ بأدائك المستقبلي. وهذا ما يطلق عليه توقعات المتوسط ​​المتحرك باستخدام فترة واحدة من البيانات. والثاني هو أيضا متوسط ​​التوقعات المتحركة ولكن باستخدام فترتين من البيانات. دعونا نفترض أن كل هؤلاء الناس خرق على العقل العظيم لديك نوع من سكران قبالة لكم وتقرر أن تفعل بشكل جيد على الاختبار الثالث لأسباب خاصة بك ووضع درجة أعلى أمام كوتاليسكوت الخاص بك. كنت تأخذ الاختبار ودرجاتك هو في الواقع 89 الجميع، بما في ذلك نفسك، وأعجب. حتى الآن لديك الاختبار النهائي للفصل الدراسي القادمة وكالمعتاد كنت تشعر بالحاجة إلى غواد الجميع في جعل توقعاتهم حول كيف ستفعل على الاختبار الأخير. حسنا، نأمل أن ترى هذا النمط. الآن، ونأمل أن تتمكن من رؤية هذا النمط. ما الذي تعتقده هو صافرة الأكثر دقة بينما نعمل. الآن نعود إلى شركة التنظيف الجديدة التي بدأتها شقيقة نصف استدارة دعا صافرة بينما نعمل. لديك بعض بيانات المبيعات السابقة التي يمثلها القسم التالي من جدول بيانات. نعرض البيانات لأول مرة لتوقعات المتوسط ​​المتحرك لمدة ثلاث سنوات. يجب أن يكون إدخال الخلية C6 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C7 إلى C11. لاحظ كيف يتحرك المتوسط ​​على أحدث البيانات التاريخية ولكنه يستخدم بالضبط ثلاث فترات أحدث متاحة لكل تنبؤ. يجب أن تلاحظ أيضا أننا لسنا بحاجة حقا لجعل التنبؤات للفترات الماضية من أجل تطوير أحدث توقعاتنا. وهذا يختلف بالتأكيد عن نموذج التجانس الأسي. وشملت إيف التنبؤات كوتاباستكوت لأننا سوف استخدامها في صفحة الويب التالية لقياس صحة التنبؤ. الآن أريد أن أعرض النتائج المماثلة لمتوسطين توقعات المتوسط ​​المتحرك. يجب أن يكون إدخال الخلية C5 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C6 إلى C11. لاحظ كيف الآن فقط اثنين من أحدث القطع من البيانات التاريخية تستخدم لكل التنبؤ. مرة أخرى لقد قمت بتضمين التنبؤات اقتباسا لأغراض التوضيح واستخدامها لاحقا في التحقق من صحة التوقعات. بعض الأمور الأخرى التي من الأهمية أن تلاحظ. وبالنسبة للمتوسط ​​المتحرك للمتوسط ​​m، لا يتوقع إلا أن تستخدم معظم قيم المعطيات الأخيرة لجعل التنبؤ. لا شيء آخر ضروري. وبالنسبة للتنبؤ المتوسط ​​المتحرك للمتوسط ​​m، عند التنبؤ بالتنبؤات، لاحظ أن التنبؤ الأول يحدث في الفترة m 1. وستكون هاتان المسألتان مهمتين جدا عند تطوير الشفرة. تطوير المتوسط ​​المتحرك المتحرك. الآن نحن بحاجة إلى تطوير رمز لتوقعات المتوسط ​​المتحرك التي يمكن استخدامها أكثر مرونة. تتبع التعليمات البرمجية. لاحظ أن المدخلات هي لعدد الفترات التي تريد استخدامها في التوقعات ومصفوفة القيم التاريخية. يمكنك تخزينه في أي المصنف الذي تريده. وظيفة موفينغافيراج (تاريخي، نومبروفريودس) كما واحد إعلان وتهيئة المتغيرات ديم البند كما متغير عداد خافت كما عدد صحيح تراكم خافت كما أحادي ديم تاريخي الحجم كما عدد صحيح تهيئة المتغيرات عداد 1 تراكم 0 تحديد حجم الصفيف التاريخي تاريخ سيز التاريخية. الكونت كونتر 1 إلى نومبروفريودس تجميع العدد المناسب من أحدث القيم التي تمت ملاحظتها سابقا تراكم تراكم تاريخي (تاريخي - عدد نومبريوفريودس عداد) موفينغافيراج تراكوم نومبروفريودس سيتم شرح التعليمات البرمجية في الصف. إذا كنت ترغب في وضع الوظيفة على جدول البيانات بحيث تظهر نتيجة الحساب حيث ترغب في ذلك. 3 فهم مستويات وأساليب التنبؤ يمكنك إنشاء كل من التنبؤات (بند واحد) والتنبؤات (ملخص المنتج) التي تعكس المنتج أنماط الطلب. ويقوم النظام بتحليل المبيعات السابقة لحساب التوقعات باستخدام 12 طريقة للتنبؤ. وتشمل التوقعات معلومات تفصيلية على مستوى البند ومعلومات أعلى مستوى عن فرع أو الشركة ككل. 3.1 معايير تقييم أداء التوقعات اعتمادا على اختيار خيارات المعالجة وعلى الاتجاهات والأنماط في بيانات المبيعات، فإن بعض أساليب التنبؤ تؤدي أداء أفضل من غيرها بالنسبة لمجموعة بيانات تاريخية معينة. قد لا تكون طريقة التنبؤ المناسبة لمنتج واحد مناسبة لمنتج آخر. قد تجد أن طريقة التنبؤ التي توفر نتائج جيدة في مرحلة واحدة من دورة حياة المنتج لا تزال مناسبة طوال دورة الحياة بأكملها. يمكنك الاختيار بين طريقتين لتقييم الأداء الحالي لطرق التنبؤ: النسبة المئوية للدقة (بوا). متوسط ​​الانحراف المطلق (درهم). تتطلب كل من طرق تقييم الأداء هذه بيانات مبيعات سابقة لفترة تحددها. وتسمى هذه الفترة فترة الانتظار أو فترة من أفضل ملاءمة. وتستخدم البيانات في هذه الفترة كأساس للتوصية باستخدام طريقة التنبؤ في وضع توقعات التوقعات التالية. هذه التوصية خاصة بكل منتج ويمكن أن تتغير من جيل واحد إلى آخر. 3.1.1 أفضل ملاءمة يوصى النظام بأفضل توقعات مناسبة من خلال تطبيق أساليب التنبؤ المحددة على تاريخ طلب المبيعات السابق ومقارنة محاكاة التنبؤ بالتاريخ الفعلي. عندما تقوم بتوليد توقعات أفضل مناسبة، يقارن النظام تواريخ أوامر المبيعات الفعلية للتنبؤات لفترة زمنية محددة ويحسب مدى دقة كل طريقة تنبؤ مختلفة توقعت المبيعات. ثم يوصي النظام التنبؤ الأكثر دقة كما الأنسب. ويوضح هذا الرسم البياني أفضل التنبؤات: الشكل 3-1 أفضل التنبؤات المناسبة يستخدم النظام هذا التسلسل من الخطوات لتحديد أفضل ملاءمة: استخدم كل طريقة محددة لمحاكاة توقعات لفترة الاستبقاء. قارن المبيعات الفعلية بالتنبؤات المحاكية لفترة الاستبعاد. احسب بوا أو ماد لتحديد طريقة التنبؤ التي تتطابق بشكل وثيق مع المبيعات الفعلية السابقة. يستخدم النظام إما بوا أو درهم، استنادا إلى خيارات المعالجة التي تحددها. التوصية بتوقعات أفضل من قبل بوا التي هي الأقرب إلى 100 في المئة (أكثر أو أقل) أو درهم الذي هو الأقرب إلى الصفر. 3.2 طرق التنبؤ جد إدواردز إنتربريسون إدارة التنبؤات تستخدم 12 طريقة للتنبؤ الكمي وتشير إلى الطريقة التي توفر أفضل ملاءمة لحالة التنبؤ. يناقش هذا القسم: الطريقة 1: النسبة المئوية عن العام الماضي. الطريقة الثانية: النسبة المئوية المحسوبة خلال العام الماضي. الطريقة الثالثة: السنة الماضية لهذا العام. الطريقة الرابعة: المتوسط ​​المتحرك. الطريقة 5: التقريب الخطي. الطريقة 6: أقل المربعات الانحدار. الطريقة 7: الدرجة الثانية التقريب. الطريقة الثامنة: الطريقة المرنة. الطريقة التاسعة: المتوسط ​​المتحرك المرجح. طريقة 10: خطي تجانس. طريقة 11: الأسي تمهيد. طريقة 12: الأسي تمهيد مع الاتجاه والموسمية. حدد الطريقة التي تريد استخدامها في خيارات المعالجة لبرنامج توليد التوقعات (R34650). معظم هذه الطرق توفر رقابة محدودة. على سبيل المثال، يمكن تحديد الوزن الذي تم وضعه على البيانات التاريخية الحديثة أو النطاق الزمني للبيانات التاريخية المستخدمة في الحسابات من قبلك. وتشير الأمثلة الواردة في الدليل إلى طريقة الحساب لكل طريقة من طرق التنبؤ المتاحة، بالنظر إلى مجموعة متطابقة من البيانات التاريخية. تستخدم أمثلة الطريقة في الدليل جزءا أو كل مجموعات البيانات هذه، وهي بيانات تاريخية من العامين الماضيين. وتذهب التوقعات المتوقعة إلى العام المقبل. هذه البيانات تاريخ المبيعات مستقرة مع الزيادات الموسمية الصغيرة في شهري يوليو وديسمبر. هذا النمط هو سمة من المنتجات الناضجة التي قد تقترب من التقادم. 3.2.1 الطريقة 1: النسبة المئوية في السنة الماضية تستخدم هذه الطريقة صيغة النسبة المئوية خلال السنة الماضية لمضاعفة كل فترة توقع بنسبة الزيادة أو النقصان المحددة المئوية. للتنبؤ الطلب، وهذا الأسلوب يتطلب عدد من فترات لأفضل صالح بالإضافة إلى سنة واحدة من تاريخ المبيعات. هذه الطريقة مفيدة للتنبؤ بالطلب على الأصناف الموسمية مع النمو أو الانخفاض. 3.2.1.1 مثال: الطريقة الأولى: النسبة المئوية خلال السنة الماضية تضاعف صيغة النسبة المئوية من صيغة العام الماضي بيانات المبيعات عن العام السابق بعامل تحدده ثم المشاريع التي ينتج عنها العام التالي. قد تكون هذه الطريقة مفيدة في وضع الميزانيات لمحاكاة تأثير معدل نمو محدد أو عندما يكون تاريخ المبيعات مكونا موسميا هاما. مواصفات التنبؤ: عامل الضرب. على سبيل المثال، حدد 110 في خيار المعالجة لزيادة بيانات سجل مبيعات السنوات السابقة بنسبة 10٪. سجل المبيعات المطلوب: سنة واحدة لحساب التوقعات، بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤ (فترات أفضل ملاءمة) التي تحددها. هذا الجدول هو التاريخ المستخدم في حساب التنبؤات: توقعات فبراير تساوي 117 مرة 1.1 128.7 مقربة إلى 129. توقعات مارس تساوي 115 مرة 1.1 126.5 مقربة إلى 127. 3.2.2 الطريقة الثانية: النسبة المئوية المحسوبة خلال السنة الماضية تستخدم هذه الطريقة النسبة المحسوبة صيغة العام الماضي لمقارنة المبيعات السابقة لفترات محددة للمبيعات من نفس الفترات من العام السابق. ويحدد النظام نسبة مئوية من الزيادة أو النقصان، ثم يضاعف كل فترة حسب النسبة المئوية لتحديد التوقعات. للتنبؤ الطلب، وهذا الأسلوب يتطلب عدد من فترات من تاريخ النظام المبيعات بالإضافة إلى سنة واحدة من تاريخ المبيعات. وهذه الطريقة مفيدة للتنبؤ بالطلب على املدى القصير على البنود املوسمية مع النمو أو االنخفاض. 3.2.2.1 مثال: الطريقة الثانية: النسبة المئوية المحسوبة خلال السنة الماضية النسبة المئوية المحسوبة خلال صيغة السنة الماضية تضاعف بيانات المبيعات عن العام السابق بعامل يحسبه النظام، ثم يقوم بتطوير تلك النتيجة للعام التالي. قد يكون هذا الأسلوب مفيدا في إسقاط تأثير توسيع معدل النمو الأخير للمنتج في العام المقبل مع الحفاظ على نمط موسمي موجود في تاريخ المبيعات. مواصفات التوقعات: مجموعة من تاريخ المبيعات لاستخدامها في حساب معدل النمو. على سبيل المثال، حدد n يساوي 4 في خيار المعالجة لمقارنة سجل المبيعات للفترات الأربع الأخيرة بتلك الفترات الأربع نفسها من العام السابق. استخدام نسبة المحسوبة لجعل الإسقاط للعام المقبل. تاريخ المبيعات المطلوب: سنة واحدة لحساب التوقعات بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (فترات أفضل ملاءمة). هذا الجدول هو التاريخ المستخدم في حساب التوقعات، نظرا ن 4: توقعات فبراير يساوي 117 مرة 0.9766 114.26 مقربة إلى 114. توقعات مارس يساوي 115 مرة 0.9766 112.31 مقربة إلى 112. 3.2.3 الطريقة 3: السنة الماضية لهذا العام يستخدم هذا الأسلوب مبيعات العام الماضي للسنوات المقبلة المتوقع. للتنبؤ الطلب، وهذا الأسلوب يتطلب عدد من فترات أفضل تناسب بالإضافة إلى سنة واحدة من تاريخ النظام المبيعات. هذه الطريقة مفيدة للتنبؤ بالطلب على المنتجات الناضجة مع الطلب على مستوى أو الطلب الموسمي دون اتجاه. 3.2.3.1 مثال: الطريقة الثالثة: السنة الماضية إلى السنة الحالية تقوم صيغة السنة الماضية لهذا العام بنسخ بيانات المبيعات من السنة السابقة إلى السنة التالية. قد تكون هذه الطريقة مفيدة في إعداد الميزانية لمحاكاة المبيعات على المستوى الحالي. المنتج ناضج وليس له أي اتجاه على المدى الطويل، ولكن قد يكون هناك نمط الطلب الموسمي كبير. مواصفات التوقعات: لا شيء. تاريخ المبيعات المطلوب: سنة واحدة لحساب التوقعات بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (فترات أفضل ملاءمة). هذا الجدول هو التاريخ المستخدم في حساب التوقعات: توقعات يناير تساوي يناير من العام الماضي مع قيمة توقعات 128. توقعات فبراير تساوي فبراير من العام الماضي مع قيمة التوقعات 117. توقعات مارس تساوي مارس من العام الماضي مع قيمة التنبؤ 115-4-2-4 الطريقة 4: المتوسط ​​المتحرك تستخدم هذه الطريقة صيغة المتوسط ​​المتحرك لمتوسط ​​العدد المحدد للفترات لعرض الفترة التالية. يجب عليك إعادة حسابها في كثير من الأحيان (شهريا أو على الأقل ربع سنوي) لتعكس تغيير مستوى الطلب. للتنبؤ الطلب، وهذا الأسلوب يتطلب عدد من فترات أفضل تناسب بالإضافة إلى عدد من فترات من تاريخ النظام المبيعات. هذه الطريقة مفيدة للتنبؤ الطلب على المنتجات الناضجة دون الاتجاه. 3.2.4.1 مثال: الطريقة 4: متوسط ​​متوسط ​​الحركة المتحرك (ما) هو طريقة شعبية لتحديد متوسط ​​تاريخ المبيعات الأخير لتحديد إسقاط على المدى القصير. طريقة التنبؤ ما تتخلف عن الاتجاهات. يحدث التحيز التنبؤي والأخطاء المنهجية عندما يظهر تاريخ مبيعات المنتجات اتجاها قويا أو أنماطا موسمية. هذا الأسلوب يعمل بشكل أفضل للتنبؤات قصيرة المدى من المنتجات الناضجة من المنتجات التي هي في مراحل النمو أو التقادم من دورة الحياة. مواصفات التنبؤ: n يساوي عدد الفترات من تاريخ المبيعات لاستخدامها في حساب التوقعات. على سبيل المثال، حدد n 4 في خيار المعالجة لاستخدام أحدث أربع فترات كأساس للتوقعات في الفترة الزمنية التالية. قيمة كبيرة ل n (مثل 12) يتطلب المزيد من المبيعات التاريخ. فإنه يؤدي إلى توقعات مستقرة، ولكن بطيئة في الاعتراف التحولات في مستوى المبيعات. على العكس من ذلك، فإن قيمة صغيرة ل n (مثل 3) هي أسرع للرد على التحولات في مستوى المبيعات، ولكن التوقعات قد تتقلب على نطاق واسع بحيث أن الإنتاج لا يمكن أن تستجيب لهذه الاختلافات. تاريخ المبيعات المطلوب: n بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات (فترات أفضل ملاءمة). هذا الجدول هو التاريخ المستخدم في حساب التوقعات: توقعات فبراير تساوي (114 119 137 125) 4 123.75 مقربة إلى 124. توقعات مارس تساوي (119 137 125 124) 4 126.25 مقربة إلى 126. 3.2.5 الطريقة 5: تقريب خطي هذه الطريقة يستخدم صيغة التقريب الخطي لحساب اتجاه من عدد الفترات من تاريخ أمر المبيعات ولعرض هذا الاتجاه إلى التوقعات. يجب عليك إعادة حساب الاتجاه الشهري للكشف عن التغيرات في الاتجاهات. يتطلب هذا الأسلوب عدد الفترات من أفضل تناسب بالإضافة إلى عدد من فترات محددة من تاريخ أمر المبيعات. وهذه الطريقة مفيدة للتنبؤ بالطلب على منتجات جديدة أو منتجات ذات اتجاهات إيجابية أو سلبية متسقة لا ترجع إلى التقلبات الموسمية. 3.2.5.1 مثال: الطريقة 5: تقريب خطي يحسب التقريب الخطي اتجاه يستند إلى نقطتي بيانات تاريخ المبيعات. وتحدد هاتان النقطتان خط اتجاه مستقيمي متوقع في المستقبل. استخدم هذه الطريقة بحذر لأن التوقعات طويلة المدى تستفيد من التغييرات الصغيرة في نقطتي بيانات فقط. مواصفات التنبؤ: n يساوي نقطة البيانات في تاريخ المبيعات الذي يقارن إلى أحدث نقطة البيانات لتحديد الاتجاه. على سبيل المثال، حدد n 4 لاستخدام الفرق بين ديسمبر (أحدث البيانات) وأغسطس (أربع فترات قبل ديسمبر) كأساس لحساب الاتجاه. الحد الأدنى المطلوب لسجل المبيعات: n زائد 1 بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (الفترات الأكثر ملائمة). هذا الجدول هو التاريخ المستخدم في حساب التوقعات: توقعات كانون الثاني / يناير من العام الماضي 1 (الاتجاه) التي تساوي 137 (1 مرة 2) 139. توقعات شباط / فبراير من العام الماضي 1 (الاتجاه) التي تساوي 137 (2 مرة 2) 141. توقعات آذار / مارس من العام الماضي 1 (الاتجاه) تساوي 137 (3 مرات 2) 143. 3.2.6 الطريقة 6: انحدار المربعات الصغرى تستمد طريقة انحدار المربعات الصغرى (لسر) معادلة تصف علاقة خط مستقيم بين بيانات المبيعات التاريخية و مرور الوقت. لسر يناسب خط إلى مجموعة مختارة من البيانات بحيث يتم تقليل مجموع مربعات الاختلافات بين نقاط بيانات المبيعات الفعلية وخط الانحدار. التوقعات هي توقعات هذا الخط المستقيم في المستقبل. تتطلب هذه الطريقة تاريخ بيانات المبيعات للفترة التي يمثلها عدد الفترات الأكثر ملاءمة بالإضافة إلى العدد المحدد لفترات البيانات التاريخية. الحد الأدنى المطلوب هو نقطتي بيانات تاريخيتين. هذه الطريقة مفيدة للتنبؤ بالطلب عند وجود اتجاه خطي في البيانات. 3.2.6.1 مثال: الطريقة 6: انحدار المربعات الصغرى الانحدار الخطي، أو انحدار المربعات الصغرى (لسر)، هي الطريقة الأكثر شعبية لتحديد اتجاه خطي في بيانات المبيعات التاريخية. وتحسب الطريقة القيمتين a و b المطلوب استخدامها في الصيغة: تصف هذه المعادلة خطا مستقيما، حيث تمثل Y المبيعات وتمثل X الوقت. الانحدار الخطي بطيء في التعرف على نقاط التحول والتحولات وظيفة خطوة في الطلب. الانحدار الخطي يناسب خط مستقيم على البيانات، حتى عندما تكون البيانات موسمية أو أفضل وصفها منحنى. عندما تتبع بيانات تاريخ المبيعات منحنى أو لديها نمط موسمي قوي، يحدث التحيز المتوقع والأخطاء المنهجية. مواصفات التوقعات: n تساوي فترات تاريخ المبيعات التي سيتم استخدامها في حساب قيم a و b. على سبيل المثال، حدد n 4 لاستخدام السجل من سبتمبر إلى ديسمبر كأساس للحسابات. وعندما تكون البيانات متاحة، عادة ما تستخدم أكبر n (مثل n 24). يحدد لسر خطا لعدد قليل من نقطتي بيانات. على سبيل المثال، تم اختيار قيمة صغيرة ل n (n 4) لتقليل الحسابات اليدوية المطلوبة للتحقق من النتائج. الحد الأدنى المطلوب من تاريخ المبيعات: عدد الفترات الزمنية بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات (الفترات الأكثر ملائمة). هذا الجدول هو التاريخ المستخدم في حساب التنبؤات: توقعات مارس تساوي 119.5 (7 مرات 2.3) 135.6 مقربة إلى 136. 3.2.7 الطريقة 7: الدرجة الثانية التقريب لعرض التوقعات، يستخدم هذا الأسلوب صيغة تقريب الدرجة الثانية لرسم منحنى التي تقوم على عدد من فترات من تاريخ المبيعات. يتطلب هذا الأسلوب عدد من فترات أفضل تناسب بالإضافة إلى عدد من فترات من أجل ترتيب المبيعات مرات ثلاثة. هذه الطريقة ليست مفيدة للتنبؤ بالطلب على المدى الطويل. 3.2.7.1 مثال: الطريقة 7: الدرجة الثانية التقريب يحدد الانحدار الخطي القيم ل a و b في صيغة التنبؤ Y a b X بهدف تركيب خط مستقيم على بيانات تاريخ المبيعات. الدرجة الثانية تقريب، ولكن هذه الطريقة تحدد القيم ل a و b و c في صيغة التنبؤ هذه: Y a b x c X 2 الهدف من هذا الأسلوب هو ملاءمة منحنى لبيانات تاريخ المبيعات. هذه الطريقة مفيدة عندما يكون المنتج في مرحلة الانتقال بين مراحل دورة الحياة. على سبيل المثال، عندما يتحرك منتج جديد من مرحلة مقدمة إلى مراحل النمو، قد يتسارع اتجاه المبيعات. بسبب مصطلح الترتيب الثاني، يمكن التنبؤ بسرعة الاقتراب اللانهاية أو انخفاض إلى الصفر (اعتمادا على ما إذا كان معامل ج إيجابي أو سلبي). هذه الطريقة مفيدة فقط على المدى القصير. مواصفات التنبؤ: الصيغة تجد a، b، و c لتناسب منحنى إلى بالضبط ثلاث نقاط. يمكنك تحديد n، وعدد الفترات الزمنية للبيانات لتتراكم في كل من النقاط الثلاث. في هذا المثال، n 3. يتم دمج بيانات المبيعات الفعلية للفترة من أبريل إلى يونيو في النقطة الأولى، Q1. يوليو إلى سبتمبر تضاف معا لخلق Q2، وأكتوبر خلال ديسمبر المبلغ إلى Q3. تم تركيب المنحنى على القيم الثلاثة Q1 و Q2 و Q3. تاريخ المبيعات المطلوب: 3 مرات n فترات لحساب التوقعات بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤ (فترات من أفضل تناسب). هذا الجدول هو التاريخ المستخدم في حساب التوقعات: Q0 (يناير) (فبراير) (مارس) Q1 (أبريل) (مايو) (يونيو) الذي يساوي 125 122 137 384 Q2 (يوليو) (أغسطس) (سبتمبر) الذي يساوي 140 129 131 400 Q3 (أكتوبر) (نوفمبر) (ديسمبر) الذي يساوي 114 119 137 370 تتضمن الخطوة التالية حساب المعاملات الثلاثة a و b و c لاستخدامها في صيغة التنبؤ Y أب X c X 2. يتم عرض Q1 و Q2 و Q3 على الرسم البياني، حيث يتم رسم الوقت على المحور الأفقي. Q1 يمثل إجمالي المبيعات التاريخية لشهر أبريل ومايو ويونيو ويتم رسمها في X 1 Q2 يتوافق مع يوليو حتى سبتمبر Q3 يتوافق من أكتوبر حتى ديسمبر و Q4 يمثل يناير حتى مارس. ويوضح هذا الرسم تخطيطات Q1 و Q2 و Q3 و Q4 للحصول على تقريب من الدرجة الثانية: الشكل 3-2 التآمر Q1 و Q2 و Q3 و Q4 للحصول على تقريب من الدرجة الثانية ثلاث معادلات تصف النقاط الثلاث على الرسم البياني: (1) Q1 بكس سك 2 حيث X 1 (Q1 أبك) (2) Q2 a بكس سك 2 حيث X 2 (Q2 a 2b 4c) (3) Q3 a بكس سك 2 حيث X 3 (Q3 a 3b 9c) حل المعادلات الثلاث في وقت واحد (1) من المعادلة 2 (2) وحل b: (2) نداش (1) Q2 نداش Q1 b 3c b (Q2 نداش Q1) ندش 3c استبدال هذه المعادلة ل (3) Q3 3 (Q2 نداش Q1) نداش 3C 9C Q3 نداش 3 (Q2 نداش Q1) وأخيرا، استبدل هذه المعادلتين ب و ب في المعادلة (1): (1) Q3 نداش (Q2 نداش Q1) (Q2 نداش Q1) نداش 3c ج Q1 ج (Q3 نداش Q2) (Q1 نداش Q2) 2 طريقة التقريب من الدرجة الثانية تحسب a و b و c على النحو التالي: Q3 نداش 3 (Q2 نداش Q1 ) 370 ندش 3 (400 ندش 384) 370 ندش 3 (16) 322 ب (Q2 نداش Q1) ndash3c (400 ندا ش 384) نداش (3 مرات ndash23) 16 69 85 ج (Q3 نداش Q2) (Q1 نداش Q2) 2 (370 نداش 400) (384 نداش 400) 2 ndash23 هذا هو حساب من الدرجة الثانية تقدير تقريبي: Y بكس سك 2 322 85X (ndash23) (X 2) عندما يكون X 4، Q4 322 340 ندش 368 294. تبلغ التوقعات 294 3 98 لكل فترة. عندما يكون X 5، Q5 322 425 نداش 575 172. وتقدر التوقعات 172 3 58.33 مقربة إلى 57 لكل فترة. عندما X 6، Q6 322 510 نداش 828 4. توقعات يساوي 4 3 1.33 تقريب إلى 1 في الفترة. هذا هو التوقعات للعام المقبل، السنة الماضية إلى هذا العام: 3.2.8 الطريقة 8: طريقة مرنة تمكنك هذه الطريقة لتحديد أفضل عدد مناسب من فترات من تاريخ النظام المبيعات التي تبدأ قبل أشهر من تاريخ بدء التنبؤ، وإلى تطبيق عامل زيادة أو نقصان في النسبة المئوية لتعديل التوقعات. هذه الطريقة مشابهة الأسلوب 1، النسبة المئوية خلال العام الماضي، إلا أنه يمكنك تحديد عدد الفترات التي تستخدمها كقاعدة. اعتمادا على ما تحدده n، تتطلب هذه الطريقة فترات تناسب أفضل بالإضافة إلى عدد فترات بيانات المبيعات المشار إليها. وهذه الطريقة مفيدة للتنبؤ بالطلب على الاتجاه المخطط. 3.2.8.1 مثال: الطريقة 8: الطريقة المرنة الأسلوب المرن (النسبة المئوية خلال الأشهر السابقة) يشبه الأسلوب 1، النسبة المئوية خلال العام الماضي. كلتا الطريقتين تضاعف بيانات المبيعات من فترة زمنية سابقة بعامل محدد من قبلك، ومن ثم عرض هذه النتيجة في المستقبل. في طريقة النسبة المئوية خلال العام الماضي، يستند الإسقاط إلى بيانات من نفس الفترة الزمنية في العام السابق. يمكنك أيضا استخدام طريقة مرنة لتحديد فترة زمنية، بخلاف نفس الفترة من العام الماضي، لاستخدامها كأساس للحسابات. عامل الضرب. على سبيل المثال، حدد 110 في خيار المعالجة لزيادة بيانات سجل المبيعات السابقة بنسبة 10٪. فترة الأساس. علی سبیل المثال، یسبب الرقم 4 التنبؤ الأول علی أساس بیانات المبیعات في شھر سبتمبر من العام الماضي. الحد الأدنى المطلوب من تاريخ المبيعات: عدد الفترات التي تعود إلى فترة الأساس بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات (فترات أفضل ملاءمة). هذا الجدول هو التاريخ المستخدم في حساب التوقعات: 3.2.9 الطريقة 9: المتوسط ​​المتحرك المتوسط ​​يشبه متوسط ​​المتوسط ​​المتحرك المتوسط ​​الصيغة 4، صيغة المتوسط ​​المتحرك، لأنه متوسط ​​سجل مبيعات الأشهر السابقة لعرض تاريخ مبيعات الأشهر التالية. ومع ذلك، مع هذه الصيغة يمكنك تعيين الأوزان لكل من الفترات السابقة. تتطلب هذه الطريقة عدد الفترات المرجحة المختارة بالإضافة إلى عدد الفترات التي تناسب البيانات. على غرار المتوسط ​​المتحرك، هذه الطريقة متخلفة عن اتجاهات الطلب، لذلك لا يوصى باستخدام هذه الطريقة للمنتجات ذات الاتجاهات القوية أو الموسمية. هذا الأسلوب هو مفيد للتنبؤ الطلب على المنتجات الناضجة مع الطلب الذي هو مستوى نسبيا. 3.2.9.1 مثال: الطريقة 9: المتوسط ​​المتحرك المتوسط ​​يشبه أسلوب المتوسط ​​المتحرك المتوسط ​​(ويم) الطريقة 4، المتوسط ​​المتحرك (ما). ومع ذلك، يمكنك تعيين أوزان غير متكافئة للبيانات التاريخية عند استخدام وما. وتحسب الطريقة المتوسط ​​المرجح لتاريخ المبيعات الأخير للوصول إلى إسقاط على المدى القصير. عادة ما يتم تعيين بيانات أكثر حداثة وزنا أكبر من البيانات القديمة، لذلك وما هو أكثر استجابة للتحولات في مستوى المبيعات. ومع ذلك، يحدث التحيز التنبؤي والأخطاء المنهجية عندما يظهر تاريخ مبيعات المنتجات اتجاهات قوية أو أنماط موسمية. هذا الأسلوب يعمل بشكل أفضل للتنبؤات قصيرة المدى من المنتجات الناضجة من المنتجات في مراحل النمو أو التقادم من دورة الحياة. عدد الفترات من تاريخ المبيعات (ن) لاستخدامها في حساب التوقعات. على سبيل المثال، حدد n 4 في خيار المعالجة لاستخدام أحدث أربع فترات كأساس للتوقعات في الفترة الزمنية التالية. قيمة كبيرة ل n (مثل 12) يتطلب المزيد من المبيعات التاريخ. هذه القيمة تؤدي إلى توقعات مستقرة، ولكن بطيئة الاعتراف التحولات في مستوى المبيعات. وعلى العكس من ذلك، فإن قيمة صغيرة ل n (مثل 3) تستجيب بسرعة أكبر للتحولات في مستوى المبيعات، ولكن التوقعات قد تتقلب على نطاق واسع بحيث لا يمكن للإنتاج أن يستجيب للتغيرات. يجب ألا يتجاوز العدد الإجمالي للفترات لخيار المعالجة rdquo14 - الفترات المرسلة إلى إينلوديدردو 12 شهرا. الوزن الذي تم تعيينه لكل من فترات البيانات التاريخية. يجب أن تكون الأوزان المخصصة 1.00. على سبيل المثال، عندما ن 4، تعيين أوزان 0.50، 0.25، 0.15، 0.10 مع أحدث البيانات التي تتلقى أكبر قدر من الوزن. الحد الأدنى المطلوب لسجل المبيعات: n بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات (فترات أفضل ملاءمة). هذا الجدول هو التاريخ المستخدم في حساب التنبؤات: توقعات يناير تساوي (131 مرة 0.10) (114 مرة 0.15) (119 مرة 0.25) (137 مرة 0.50) (0.10 0.15 0.25 0.50) 128.45 مقربة إلى 128. توقعات فبراير تساوي (114 مرة 0.12) (119 مرة 0.15) (137 مرة 0.25) (128 مرة 0.50) 1 127.5 مقربة إلى 128. توقعات مارس تساوي (119 مرة 0.10) (137 مرة 0.15) (128 مرة 0.25) (128 مرة 0.50) 1 128.45 128. 10-2-10 الطريقة 10: التجانس الخطي تحسب هذه الطريقة المتوسط ​​المرجح لبيانات المبيعات السابقة. في الحساب، يستخدم هذا الأسلوب عدد فترات تاريخ طلب المبيعات (من 1 إلى 12) المشار إليه في خيار المعالجة. يستخدم النظام تطور رياضي ل وزن البيانات في نطاق من الأول (أقل الوزن) إلى النهائي (معظم الوزن). ثم يقوم النظام بتطوير هذه المعلومات لكل فترة في التوقعات. تتطلب هذه الطريقة أشهر مناسبة بالإضافة إلى سجل أوامر المبيعات لعدد الفترات المحددة في خيار المعالجة. 3.2.10.1 مثال: الطريقة 10: تمهيد خطي تشبه هذه الطريقة الطريقة 9، وما. ومع ذلك، بدلا من تعيين تعسفي للأوزان للبيانات التاريخية، يتم استخدام صيغة لتعيين الأوزان التي تنخفض خطيا ويجمع إلى 1.00. ثم تحسب الطريقة المتوسط ​​المرجح لتاريخ المبيعات الأخير للتوصل إلى إسقاط على المدى القصير. ومثل جميع تقنيات التنبؤ المتوسط ​​المتحرك الخطي، فإن التحيز المتوقع والأخطاء المنهجية تحدث عندما يظهر تاريخ مبيعات المنتجات اتجاها قويا أو أنماطا موسمية. هذا الأسلوب يعمل بشكل أفضل للتنبؤات قصيرة المدى من المنتجات الناضجة من المنتجات في مراحل النمو أو التقادم من دورة الحياة. n يساوي عدد فترات تاريخ المبيعات لاستخدامها في حساب التوقعات. على سبيل المثال، حدد n يساوي 4 في خيار المعالجة لاستخدام أحدث أربع فترات كأساس للتوقعات في الفترة الزمنية التالية. يقوم النظام تلقائيا بتعيين أوزان البيانات التاريخية التي تنخفض خطيا وتجمع إلى 1.00. على سبيل المثال، عندما يساوي n 4، يعين النظام أوزان 0،4 و 0،3 و 0،2 و 0،1، مع تلقي أحدث البيانات أكبر وزن. الحد الأدنى المطلوب لسجل المبيعات: n بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات (فترات أفضل ملاءمة). هذا الجدول هو التاريخ المستخدم في حساب التوقعات: 3.2.11 الطريقة 11: التماسك الأسي تحسب هذه الطريقة متوسطا سلسا، والذي يصبح تقديرا يمثل المستوى العام للمبيعات خلال فترات البيانات التاريخية المختارة. تتطلب هذه الطريقة تاريخ بيانات المبيعات للفترة الزمنية التي يمثلها عدد الفترات التي تناسبها بشكل أفضل بالإضافة إلى عدد فترات البيانات التاريخية المحددة. والشرط الأدنى هو فترتان للبيانات التاريخية. هذه الطريقة مفيدة للتنبؤ بالطلب عند عدم وجود اتجاه خطي في البيانات. 3.2.11.1 مثال: الطريقة 11: تمهيد الأسي يشبه هذا الأسلوب الطريقة 10، التمهيد الخطي. في التنعيم الخطي، يعين النظام الأوزان التي تنخفض خطيا إلى البيانات التاريخية. في التماسك الأسي، يعين النظام الأوزان التي تسوس بشكل كبير. معادلة التنبؤ الأسي المستمر: التنبؤ ألفا (المبيعات الفعلية السابقة) (1 ندشالفا) (التوقعات السابقة) التوقعات هي المتوسط ​​المرجح للمبيعات الفعلية من الفترة السابقة والتوقعات من الفترة السابقة. ألفا هو الوزن الذي يتم تطبيقه على المبيعات الفعلية للفترة السابقة. (1 ندش ألفا) هو الوزن الذي يتم تطبيقه على التوقعات للفترة السابقة. تتراوح قيم ألفا من 0 إلى 1 وتتراوح عادة بين 0.1 و 0.4. مجموع الأوزان هو 1.00 (ألفا (1 نداش ألفا) 1). يجب تعيين قيمة ثابت ثابت، ألفا. إذا لم تقم بتعيين قيمة ثابت التمهيد، يقوم النظام بحساب قيمة مفترضة تستند إلى عدد فترات سجل المبيعات المحددة في خيار المعالجة. ألفا يساوي ثابت التجانس الذي يستخدم لحساب المتوسط ​​المنعم للمستوى العام أو حجم المبيعات. قيم نطاق ألفا من 0 إلى 1. n تساوي نطاق بيانات سجل المبيعات لتضمينها في الحسابات. عموما، سنة واحدة من بيانات تاريخ المبيعات كافية لتقدير المستوى العام للمبيعات. على سبيل المثال، تم اختيار قيمة صغيرة ل n (n 4) لتقليل الحسابات اليدوية المطلوبة للتحقق من النتائج. ويمكن أن يؤدي التمهيد الأسي إلى توليد توقعات تستند إلى نقطة بيانات تاريخية واحدة فقط. الحد الأدنى المطلوب لسجل المبيعات: n بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات (فترات أفضل ملاءمة). هذا الجدول هو التاريخ المستخدم في حساب التوقعات: 3.2.12 الطريقة 12: التماسك الأسي مع الاتجاه والموسمية تحسب هذه الطريقة اتجاه، ومؤشر موسمية، ومتوسط ​​ممتع أضعافا مضاعفة من تاريخ أمر المبيعات. ويطبق النظام بعد ذلك إسقاطا للاتجاه نحو التنبؤات ويعدل للمؤشر الموسمي. وتتطلب هذه الطريقة عدد الفترات التي تناسب على نحو أفضل بالإضافة إلى بيانات مبيعات لمدة سنتين، وهي مفيدة للبنود التي لها اتجاه وموسمية في التنبؤات. يمكنك إدخال عامل ألفا وبيتا، أو لديك نظام حساب لهم. عاملا ألفا وبيتا هما ثابت التجانس الذي يستخدمه النظام لحساب المتوسط ​​المنعم للمستوى العام أو حجم المبيعات (ألفا) وعنصر الاتجاه للتنبؤ (بيتا). 3.2.12.1 مثال: الطريقة 12: تمهيد الأسي مع الاتجاه والموسمية هذا الأسلوب مشابه لطريقة 11، الأسي تمهيد، في أن يتم حساب متوسط ​​سلسة. ومع ذلك، تتضمن الطريقة 12 أيضا مصطلحا في معادلة التنبؤ لحساب اتجاه سلس. وتتكون التوقعات من متوسط ​​سلس يتم تعديله لاتجاه خطي. عندما يتم تحديده في خيار المعالجة، يتم تعديل التوقعات أيضا للموسمية. يساوي ألفا ثابت التجانس الذي يستخدم في حساب المتوسط ​​الملمس للمستوى العام أو حجم المبيعات. قيم نطاق ألفا من 0 إلى 1. يساوي بيتا ثابت التجانس المستخدم في حساب المتوسط ​​الميسر لعنصر الاتجاه للتنبؤ. قيم نطاق بيتا من 0 إلى 1. ما إذا كان يتم تطبيق مؤشر موسمية على التوقعات. ألفا وبيتا مستقلة عن بعضها البعض. ليس لديهم ما يصل إلى 1.0. الحد الأدنى المطلوب من تاريخ المبيعات: سنة واحدة بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات (فترات أفضل ملاءمة). وعندما يتوفر عامان أو أكثر من البيانات التاريخية، يستخدم النظام سنتين من البيانات في الحسابات. تستخدم الطريقة 12 معادلتين أسيتين سموثينغ ومتوسط ​​بسيط واحد لحساب المتوسط ​​السلس، واتجاه سلس، ومؤشر موسمية متوسط ​​بسيط. متوسط ​​متوسط ​​موحد بسيط: مؤشر متوسط ​​بسيط للموسم: الشكل 3-3 مؤشر متوسط ​​موحد بسيط يتم حساب التوقعات باستخدام نتائج المعادلات الثلاث: L هو طول الموسمية (L يساوي 12 شهرا أو 52 أسبوعا). t هي الفترة الزمنية الحالية. م هو عدد الفترات الزمنية في مستقبل التوقعات. S هو عامل التعديل الموسمية المضاعف الذي يتم فهرسته إلى الفترة الزمنية المناسبة. يسرد هذا الجدول التاريخ المستخدم في حساب التوقعات: يقدم هذا القسم لمحة عامة عن تقييمات التوقعات ويناقش: يمكنك اختيار أساليب التنبؤ لتوليد ما يصل إلى 12 توقعات لكل منتج. وقد تخلق كل طريقة للتنبؤ إسقاطا مختلفا قليلا. عندما يتم التنبؤ بآلاف المنتجات، يكون القرار الشخصي غير عملي فيما يتعلق بالتنبؤ باستخدامه في الخطط لكل منتج. يقوم النظام تلقائيا بتقييم الأداء لكل طريقة تنبؤ تحددها ولكل منتج تتوقعه. يمكنك الاختيار بين معيارين للأداء: ماد و بوا. ماد هو مقياس لخطأ التنبؤ. بوا هو مقياس للتحيز المتوقع. يتطلب كل من تقنيات تقييم الأداء هذه بيانات تاريخ المبيعات الفعلية لفترة تحددها أنت. وتسمى فترة التاريخ الحديث المستخدمة للتقييم فترة الانتظار أو فترة من أفضل ملاءمة. لقياس أداء طريقة التنبؤ، النظام: يستخدم الصيغ المتوقعة لمحاكاة توقعات لفترة الاستحقاق التاريخية. إجراء مقارنة بين بيانات المبيعات الفعلية والتوقعات المحاكية لفترة الاستبعاد. عند تحديد أساليب متعددة للتنبؤ، تحدث هذه العملية نفسها لكل طريقة. يتم احتساب توقعات متعددة لفترة الاستحواذ ومقارنة مع تاريخ المبيعات المعروفة عن نفس الفترة. ويوصى باستخدام طريقة التنبؤ التي تنتج أفضل مطابقة (أفضل ملاءمة) بين التوقعات والمبيعات الفعلية خلال فترة الاستبعاد لاستخدامها في الخطط. هذه التوصية خاصة بكل منتج وقد تتغير في كل مرة تنشئ فيها توقعات. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. The simplest approach would be to take the average of January through March and use that to estimate April8217s sales: (129 134 122)3 128.333 Hence, based on the sales of January through March, you predict that sales in April will be 128,333. مرة واحدة أبريل 8217s المبيعات الفعلية تأتي في، وكنت ثم حساب توقعات لشهر مايو، وهذه المرة باستخدام فبراير حتى أبريل. يجب أن تكون متسقة مع عدد الفترات التي تستخدمها لنقل متوسط ​​التنبؤ. عدد الفترات التي تستخدمها في توقعات المتوسط ​​المتحرك الخاص بك تعسفي قد تستخدم فقط فترتين، أو خمس أو ست فترات ما تريده لتوليد توقعاتك. النهج أعلاه هو متوسط ​​متحرك بسيط. Sometimes, more recent months8217 sales may be stronger influencers of the coming month8217s sales, so you want to give those nearer months more weight in your forecast model. هذا هو المتوسط ​​المتحرك المرجح. ومثل عدد الفترات، فإن الأوزان التي تعينها تعسفية بحتة. Let8217s يقول كنت تريد أن تعطي المبيعات مارس 8217s 50 الوزن، فبراير 8217s 30 الوزن، و يناير 8217s 20. ثم توقعاتك لشهر أبريل سيكون 127،000 (122.50) (134.30) (129.20) 127. حدود متوسطات الحركة المتحركة تعتبر المتوسطات المتحركة 8220 سمعة 8221 تقنية التنبؤ. لأنك 8217re أخذ المتوسط ​​مع مرور الوقت، كنت تليين (أو تمهيد) آثار حدوثات غير منتظمة داخل البيانات. ونتيجة لذلك، فإن آثار الموسمية، ودورات الأعمال، وغيرها من الأحداث العشوائية يمكن أن تزيد بشكل كبير من الخطأ التنبؤ. ألق نظرة على قيمة بيانات 8217 ثانية كاملة، وقارن متوسط ​​متحرك لمدة 3 أيام ومتوسط ​​متحرك لخمسة فترات: لاحظ أنه في هذه الحالة لم أتمكن من إنشاء توقعات، بل ركزت على المتوسطات المتحركة. المتوسط ​​المتحرك الأول لمدة 3 أشهر هو لشهر فبراير، و 8217 ثانية متوسط ​​يناير وفبراير ومارس. كما فعلت مماثلة لمتوسط ​​5 أشهر. الآن نلقي نظرة على الرسم البياني التالي: ماذا ترى ليس سلسلة المتوسط ​​المتحرك لمدة ثلاثة أشهر أكثر سلاسة بكثير من سلسلة المبيعات الفعلية وكيف حول المتوسط ​​المتحرك لمدة خمسة أشهر IT8217s حتى أكثر سلاسة. وبالتالي، والمزيد من الفترات التي تستخدمها في المتوسط ​​المتحرك الخاص بك، وسلاسة سلسلة الوقت الخاص بك. وبالتالي، للتنبؤ، قد لا يكون المتوسط ​​المتحرك البسيط أكثر الطرق دقة. إن أساليب المتوسط ​​المتحرك تثبت قيمة كبيرة عندما تحاول 8217 محاولة استخراج المكونات الموسمية وغير المنتظمة والدورية من السلاسل الزمنية لطرق التنبؤ المتقدمة مثل الانحدار و أريما، وسيتم استخدام المتوسطات المتحركة في تحليل سلسلة زمنية في وقت لاحق في السلسلة. تحديد دقة نموذج المتوسط ​​المتحرك بشكل عام، تريد طريقة التنبؤ التي تحتوي على أقل خطأ بين النتائج الفعلية والمتوقعة. ومن أكثر المقاييس شيوعا لدقة التنبؤ هو الانحراف المطلق المتوسط ​​(د. م). في هذا النهج، لكل فترة في السلسلة الزمنية التي قمت بإنشاء توقعات، كنت تأخذ القيمة المطلقة للفرق بين تلك الفترة 8217s القيم الفعلية والمتوقعة (الانحراف). ثم يمكنك متوسط ​​هذه الانحرافات المطلقة وتحصل على مقياس من درهم. ماد يمكن أن يكون مفيدا في اتخاذ قرار بشأن عدد الفترات التي متوسط، و أن كمية الوزن الذي تضعه على كل فترة. عموما، يمكنك اختيار واحد أن يؤدي إلى أدنى درهم. هنا 8217s مثال على كيفية احتساب ماد: درهم هو ببساطة المتوسط ​​8، 1، 3. المتوسطات المتحركة: خلاصة عند استخدام المتوسطات المتحركة للتنبؤ، تذكر: المتوسطات المتحركة يمكن أن تكون بسيطة أو مرجحة عدد الفترات التي تستخدمها ل متوسط، وأي الأوزان التي تعين لكل منها التعسفي التعسفي المتوسطات المتحركة على نحو سلس خارج أنماط غير منتظمة في البيانات سلسلة زمنية أكبر عدد الفترات المستخدمة لكل نقطة البيانات، وزيادة تأثير تمهيد بسبب تجانس، والتنبؤ الشهر المقبل مبيعات 8217s على أساس فإن معظم المبيعات الأخيرة في الشهر 8217s يمكن أن تؤدي إلى انحرافات كبيرة بسبب الأنماط الموسمية والدورية وغير المنتظمة في البيانات، وقدرات التمهيد لطريقة المتوسط ​​المتحرك يمكن أن تكون مفيدة في تحلل سلسلة زمنية لطرق التنبؤ أكثر تقدما. الأسبوع المقبل: تجانس الأسي في الأسبوع القادم 8217s توقعات الجمعة. سوف نناقش أساليب التمهيد الأسي، وسترى أنها يمكن أن تكون أعلى بكثير من المتوسط ​​المتحرك أساليب التنبؤ. لا يزال دون 8217t تعرف لماذا لدينا توقعات الجمعة المشاركات تظهر يوم الخميس معرفة في: tinyurl26cm6ma مثل هذا: التنقل بوست ترك الرد إلغاء الرد كان لي 2 أسئلة: 1) يمكنك استخدام نهج ما تركزت للتنبؤ أو لمجرد إزالة الموسمية 2) عندما (t-1t-2t-k) k ما للتنبؤ بفترة زمنية واحدة، هل من الممكن التنبؤ بأكثر من 1 فترة قبل أن أعتقد أن توقعاتك ستكون واحدة من النقاط التي تغذيها في المرة القادمة. شكر. أحب المعلومات وتفسيراتك I8217m سعيد تريد بلوق I8217m متأكد من أن العديد من المحللين استخدمت نهج ما تركزت للتنبؤ، ولكن أنا شخصيا لن، لأن هذا النهج يؤدي إلى فقدان الملاحظات في كلا الطرفين. هذا في الواقع ثم العلاقات في السؤال الثاني الخاص بك. عموما، يستخدم ما بسيط للتنبؤ فترة واحدة فقط المقبلة، ولكن العديد من المحللين 8211 وأنا أيضا في بعض الأحيان 8211 سوف تستخدم بلدي فترة واحدة قبل التوقعات باعتبارها واحدة من المدخلات للفترة الثانية المقبلة. It8217s المهم أن نتذكر أن المزيد من المستقبل في محاولة للتنبؤ، وزيادة خطر الخاص بك من الخطأ المتوقع. هذا هو السبب في أنني لا أوصي تركز ما للتنبؤ 8211 فقدان الملاحظات في نهاية المطاف يعني الاضطرار إلى الاعتماد على التنبؤات الملاحظات المفقودة، فضلا عن الفترة (ق) المقبلة، لذلك هناك فرصة أكبر للخطأ التنبؤ. القراء: you8217re دعا إلى وزن في هذا. هل لديك أي أفكار أو اقتراحات حول هذا بريان، شكرا لتعليقكم وتقديراتكم على بلوق مبادرة لطيفة وتفسير جميل. It8217s مفيدة حقا. أتوقع مخصص لوحات الدوائر المطبوعة للعميل الذي لا يعطي أي توقعات. لقد استخدمت المتوسط ​​المتحرك، ومع ذلك فإنه ليس دقيقا جدا حيث يمكن للصناعة صعودا وهبوطا. ونحن نرى نحو منتصف الصيف حتى نهاية العام أن الشحن pcb8217s هو ما يصل. ثم نرى في بداية العام يبطئ الطريق. كيف يمكنني أن أكون أكثر دقة مع بياناتي كاترينا، من ما قلت لي، يبدو لديك المطبوعة مبيعات لوحة الدوائر لديها عنصر موسمي. أتعامل مع الموسمية في بعض المشاركات الأخرى المتوقعة يوم الجمعة. وهناك طريقة أخرى يمكنك استخدامها، وهي سهلة جدا، وهي خوارزمية هولت-وينترز، والتي تأخذ في الاعتبار الموسمية. يمكنك العثور على تفسير جيد من هنا. تأكد من تحديد ما إذا كانت أنماطك الموسمية متعددة أو مضافة، لأن الخوارزمية مختلفة قليلا لكل منها. إذا كنت مؤامرة البيانات الشهرية الخاصة بك من بضع سنوات، ونرى أن التغيرات الموسمية في نفس الأوقات من السنوات ويبدو أن تكون ثابتة سنة بعد سنة، ثم الموسمية هو المضافة إذا كانت التغيرات الموسمية مع مرور الوقت يبدو أن تتزايد، ثم الموسمية هو المضاعف. معظم السلاسل الزمنية الموسمية ستكون مضاعفة. إذا كنت في شك، تفترض مضاعفة. حظا سعيدا مرحبا هناك، بين تلك الطريقة:. ناف التنبؤ. تحديث المتوسط. المتوسط ​​المتحرك للطول k. إما المتوسط ​​المتحرك المرجح لطول k أو التمدد الأسي أي واحد من تلك النماذج المحدثة تنصحني باستخدامها للتنبؤ بالبيانات بالنسبة لي، أفكر في المتوسط ​​المتحرك. But I don8217t know how to make it clear and structured It really depends on the quantity and quality of the data you have and your forecasting horizon (long-term, mid-term, or short-term)A time series is a sequence of observations of a periodic random variable. Examples are the monthly demand for a product, the annual freshman enrollment in a department of the university and the daily flows in a river. Time series are important for operations research because they are often the drivers of decision models. An inventory model requires estimates of future demands, a course scheduling and staffing model for a university department requires estimates of future student inflow, and a model for providing warnings to the population in a river basin requires estimates of river flows for the immediate future. Time series analysis provides tools for selecting a model that describes the time series and using the model to forecast future events. Modeling the time series is a statistical problem because observed data is used in computational procedures to estimate the coefficients of a supposed model. Models assume that observations vary randomly about an underlying mean value that is a function of time. On these pages we restrict attention to using historical time series data to estimate a time dependent model. The methods are appropriate for automatic, short term forecasting of frequently used information where the underlying causes of time variation are not changing markedly in time. In practice, the forecasts derived by these methods are subsequently modified by human analysts who incorporate information not available from the historical data. Our primary purpose in this section is to present the equations for the four forecasting methods used in the Forecasting add-in: moving average, exponential smoothing, regression and double exponential smoothing. These are called smoothing methods. Methods not considered include qualitative forecasting, multiple regression, and autoregressive methods (ARIMA). Those interested in more extensive coverage should visit the Forecasting Principles site or read one of the several excellent books on the topic. We used the book Forecasting . by Makridakis, Wheelwright and McGee, John Wiley amp Sons, 1983. To use the Excel Examples workbook, you must have the Forecasting add-in installed. Choose the Relink command to establish the links to the add-in. This page describes the models used for simple forecasting and the notation used for the analysis. This simplest forecasting method is the moving average forecast. The method simply averages of the last m observations. It is useful for time series with a slowly changing mean. This method considers the entire past in its forecast, but weighs recent experience more heavily than less recent. The computations are simple because only the estimate of the previous period and the current data determine the new estimate. The method is useful for time series with a slowly changing mean. The moving average method does not respond well to a time series that increases or decreases with time. Here we include a linear trend term in the model. The regression method approximates the model by constructing a linear equation that provides the least squares fit to the last m observations.

No comments:

Post a Comment